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The steady hydraulics of a continuously stratified fluid flowing from a stagnant 
reservoir through a horizontal contraction was studied experimentally and theor- 
etically. As the channel narrows, the flow accelerates through a succession of virtual 
controls, at each of which the flow passes from subcritical to supercritical with respect 
to a particular wave mode. When the narrowest section acts as a control, the flow is 
asymmetric about the narrowest section, supercritical in the divergent section and self- 
similar throughout the channel. With increased flow rate a new enclosed self-similar 
solution was found with level isopycnals and velocity uniform with depth. This flow is 
only symmetric in the immediate neighbourhood of the narrowest section, and in the 
divergent section remains supercritical with respect to higher internal modes, has 
separation isopycnals and splits into one or more jets separated by regions of stagnant, 
constant-density fluid. Flows which are subcritical with respect to lowest modes can 
also be asymmetric about the narrowest section for higher internal modes. The 
experiments are interpreted using steady, inviscid hydraulic theory. Solutions require 
separation isopycnals and regions of stationary, constant-density fluid in the divergent 
section. 

1. Introduction 
The flow of a continuously stratified fluid from a stagnant reservoir through a 

horizontally convergent-divergent contraction is studied here. Geophysical appli- 
cations include the flow of the stratified atmosphere through mountain gaps, and 
similar oceanic flows through gaps in mid-ocean ridges or between islands. Even a 
mesoscale eddy field with a convergent-divergent flow region will induce the flow 
regime studied here. An engineering application is in the withdrawal of fluid from a 
stratified reservoir. As a fluid mechanics problem involving hydraulic controls, it is 
particularly interesting because transitions from subcritical to supercritical flow occur 
through an infinite set of controls as the flow is accelerated from rest in the reservoir. 
This is because unlike a single-layer open channel flow or the compressible analogue 
of flow through a convergent-divergent nozzle, we are dealing with a flow that has 
essentially an infinite number of characteristics wave speeds, each associated with a 
wave of different vertical structure. Even a compound-compressible nozzle flow with 
several streams of gas flowing side-by-side (cf. Bernstein, Heiser & Hevenor 1967) has 
only one effective characteristic speed. 

There is a large body of literature on the flow of a continuously stratified fluid over 
a sill or mountain ridge. Hydraulic solutions for such flows have been discussed by 
Long (1955), Smith (1985) and others, and the multi-layer approximation to 
continuously stratified hydraulics has recently been studied by Baines & Guest (1988). 
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While the related problem of the flow of a stratified fluid through a horizontal 
contraction is relevant in a similar variety of engineering and geophysical applications, 
it has received far less attention. Recent study of the hydraulics of two-layer systems 
by Armi (1986) shows that in stratified systems, flow over a sill and through a 
contraction have a fundamentally different character due to the possibility of critical 
flow at points other than the channel’s geometric constriction, a condition first found 
by Wood (1968) and called a virtual control. Wood also showed that there is a self- 
similar flow that accelerates from a stagnant reservoir and is controlled at the 
narrowest point in the channel and through a succession of virtual controls, at each of 
which the flow passes from subcritical to supercritical with respect to a particular wave 
mode. This solution was studied further by Benjamin (1981) who showed the 
hydraulically controlled nature of the flow and conjectured that it is the only solution 
that can come from a stagnant reservoir. We find a much greater variety of flows than 
can be explained by the work of Wood or Benjamin. 

We will show here that an attempt to decelerate a self-similar flow through a virtual 
control in the divergent section of the channel results in a flow that remains 
supercritical and is characterized by separation isopycnals and acceleration of portions 
of the flow. A search for flows of this type was motivated by the earlier work of Armi 
(1986) for the two-layer system, where it was seen that although transition through, in 
this case, a single virtual control in the convergent section resulted in a uniform flow 
from the reservoir, an attempt to pass back through the same virtual control in the 
divergent section always resulted in following an intersecting solution branch which 
accelerated one of the layers and kept the flow supercritical. 

In §2, self-similar flows are reviewed. Wood’s internal self-similar pow is 
demonstrated, for which fluid is only withdrawn from a limited range of isopycnals and 
the flow has a strongly depth-dependent velocity profile. The range of densities 
withdrawn from the reservoir is controlled at the narrowest section. We also 
demonstrate a new enclosed self-similarflow that occurs at higher flow rates, when fluid 
of all densities is withdrawn from the reservoir and the flow is not controlled at the 
narrowest section. When the Boussinesq approximation is made, this enclosed self- 
similar flow is uniform in depth and accelerates uniformly as it enters the contraction. 
Solutions for these self-similar flows are presented and the equations to be used later 
in the paper discussed. In $ 3  flows with separation isopycnals, bifurcating from the 
enclosed self-similar flow, are shown to form. The separation isopycnals force the 
existence of one or more layers of stagnant constant-density fluid and one or more 
high-speed regions in the divergent section of the channel, where the flows are 
supercritical. In $4, we force an internal self-similar flow to be subcritical at the 
narrowest section. In the divergent section of the channel we find a bifurcation of the 
internal self-similar flow, analogous to that found for enclosed self-similar flows, to a 
flow with separation isopycnals and complex vertical structure that allows the flow to 
match the downstream conditions. 

Throughout the paper, we will see a variety of vertical structures in the fully 
nonlinear flows that were studied. These nonlinear vertical structures are visually 
somewhat analogous to the shapes of linear internal wave modes. A velocity profile 
that is vertically uniform will be referred to as structure 0. A profile with a single 
velocity maximum at the top or bottom of the channel will be referred to as structure 1. 
A profile with a single maximum in the centre of the channel or two maxima, one at 
each vertical boundary, will be referred to as structure 2. More complex profiles follow 
this convention. 
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1.1, Description of the experiments 
Figure 1 (plate 1) is an overview of the experimental facility. A narrow, flat-bottomed 
Plexiglas channel, 10.2 cm wide, was connected to a 123 x 246 x 24 cm Plexiglas 
reservoir. Flow into the channel entrance was accelerated slowly by a curved vertical 
wall leading into the channel. The channel was 2 cm wide at the narrowest section of 
the contraction. The convergent/divergent section was 86 cm long, so the change in 
width took place quite gradually. Preliminary experiments with a symmetrical 
contraction geometry showed that there was a tendency for the flow to separate from 
one or both walls in the divergent section of the channel. In the channel used here, 
away from the narrowest section, the divergent section of the channel changed width 
at half the rate of the convergent section. 

Figure 2(a) (plate 1) shows the contraction and the downstream section of the 
channel, and a top view, drawn to scale, is shown in figure 2(b). The flow here and in 
all figures is from right to left. A vertical ruler marks the narrowest point in the 
contraction. In figure 2(a), fluid is being withdrawn from two line sinks, the heights of 
which were adjustable. A thin slit at the base of the channel endplate, not in use in this 
photograph but used in figure 3 (a), allowed fluid to be withdrawn from the base of the 
channel. Precision gear pumps were used to establish known withdrawal flow rates. 

In all experiments, the reservoir was initially filled to a depth of 20 cm. The total flow 
rate relative to the volume of the reservoir was always such that the free surface 
descended very slowly and the resulting flow was a good approximation of a steady 
flow from an infinite reservoir. The reservoir was filled with a salt solution from a 
double-bucket setup that results in a linear density stratification. The density variation 
was typically - 0.4% over the depth of the reservoir. While filling the reservoir, the 
fluid was dyed at various levels with red food colouring. The resulting set of horizontal 
dye lines were used to visualize the vertical displacement of the density surfaces. A 
qualitative indication of the velocity field was obtained from vertical dye lines 
produced by dropping crystals of potassium permanganate into the channel. Both the 
displacement of the density surfaces and the vertical dye lines can be seen in figure 2(a). 
This flow, which will be discussed in more detail in 44, has a structure-2 profile in the 
convergent section of the channel on the right-hand side of the figure that splits into 
a structure-4 profile in the divergent section of the channel. Quantitative measurements 
of the velocity field were obtained from particle streak photographs (cf. figure 3b). 
Suspended metallic paint pigment was illuminated with a thin vertical sheet of light to 
avoid sampling particles in the side-wall boundary layers. Data from several nearly 
simultaneous streak photographs were combined to produce densely sampled velocity 
profiles at various positions along the channel (cf. figure 5) .  

2. Self-similar flows 
2.1. Internal self-similar flows 

The first experiment shown in this section duplicates that of Wood (1968); it also 
extends his work to give a quantitative measurement of the velocity field. When the 
withdrawal slit is at the channel floor and the flow rate is low, a version of Wood’s self- 
similar solution develops in which all isopycnals from the channel floor up to a 
separation isopycnal flow through the contraction. We call this an internal self-similar 
flow and a flow of this type is shown in figure 3(a) (plate 2). A streak photograph of 
a portion of this flow is shown in figure 3(b) (plate 2). The vertical dye lines show that 
the flow is most rapid at the bottom of the channel and decays smoothly with height 
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FIGURE 4. Stratified fluid flowing through a horizontal contraction. 

up to a separation isopycnal, above which the fluid is motionless; this is a structure- 
1 velocity profile. Notice that as the moving region thins, there is a region of almost 
constant density, nearly motionless fluid above the rapidly moving fluid. 

At the reservoir, where the fluid is stationary, the flow is subcritical with respect to 
all internal modes. As the flow accelerates into the contraction, it passes through an 
infinite sequence of virtual controls. At each successive virtual control, the flow 
changes from subcritical to supercritical with respect to the next lowest internal wave 
mode. The flow is asymmetric about the narrowest section, where it is critical with 
respect to the lowest internal wave mode. The critical point at the narrowest section 
controls the total range of isopycnals drawn through the contraction. When the total 
flow rate is increased, fluid is withdrawn from a larger range of isopycnals but the 
structure of the flow is not altered. In theory, this behaviour can continue until, at the 
reservoir, the separation isopycnal reaches the free surface. In practice, the presence of 
a surface boundary layer alters the structure of the solution slightly before this point 
is reached. 

2.2. Self-similar solutions 
Our development of the equations of motion follows that of Benjamin (1981). The 
problem to be studied is illustrated in figure 4. The channel has a rectangular cross- 
section and a horizontal floor, and its breadth b is assumed to vary slowly in the 
streamwise direction to a minimum b, at the narrowest section. The subscript n will be 
used throughout to denote the value of a variable at the narrowest section. The fluid 
is assumed to be inviscid, incompressible and non-diffusive, and to be flowing steadily 
with uniform cross-stream velocity. The density of the fluid on any stream surface is 
constant but varies across these surfaces. The height of a stream surface at the 
upstream reservoir is taken to be z, and at any downstream location, the height of this 
surface is written as y(z).  The density of the fluid on that surface is p(z). The total depth 
of the moving fluid is zo at the reservoir and yo  = y(zo)  at some downstream location. 
The fluid above this level is stationary and there may be a density step between the 
moving fluid and this stagnant region. At the reservoir, the fluid immediately above the 
moving region has a density ps. In the following development, the stream surface height 
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y will be taken to be the dependent variable, while the density profile and flow rate per 
unit depth at the reservoir are assumed to be known functions of z .  

The pressure in the fluid is hydrostatic and if z = zo is taken as a reference level, the 
pressure in the reservoir below this level is given by 

At any downstream location, the motionless fluid between yo and zo must be stably 
stratified with densities between p(zo) and ps .  In the case of smoothly varying 
stratification, the flow may either be confined to less than the full depth of the channel, 
in which case ps = p(zo), or fluid at all levels may be flowing, in which case the moving 
fluid is bounded above by a free surface. Both cases can be considered by taking the 
fluid between yo and z,, to be of constant density ps .  The pressure at any level below yo 
is then given by 

P b )  = g ( P s ( z o - Y o ) + r P d 9 ) .  (2) 

w + P g Y + P ( Y )  = W Z )  (3) 

The flow on each stream surface is governed by Bernoulli’s equation and so 

is constant on each stream surface. H(z) is evaluated at the motionless reservoir, where 
H(z)  = pgz+p(z). This is substituted into (3), along with (1) and (2), and an integration 
by parts is performed on each integral, to give 

where Ap = p(zo) -ps  and p’ denotes dpldz. Primes will be used throughout to denote 
z-derivatives. 

Continuity along the channel is expressed by requiring the volume flux in each 
stream surface to be constant. Thus the volume flux per unit depth is a function of z 
alone and at some downstream location the flux in a layer of thickness dy must equal 
the flux at the reservoir in a layer of thickness dz. If q(z) is the volume flux per unit 
depth, and u and b are the velocity and channel breadth at some downstream location, 
the q(z) dz = ub dy, or 

uby’ = q(z). (5 )  
Bernoulli’s equation (4) and the continuity requirement (5 )  are combined to give 

The left-hand side of (6) is a function of the upstream reservoir conditions alone, so we 
define 

(7) 
The problem is now expressed as a second-order differential equation and a pair of 
boundary conditions by dividing (6) by y” and differentiating with respect to z: 

Notice that the channel width enters the problem through the parameter A = b’//b:. 
The boundary conditions are 

cf/y’2)’ + 2h( y - 2)  p’ = 0. (8 a)  

(8 b) 

y = O  at z = O ;  
if Ap += 0, 2AAp(z-y)y” =f(zo) at z = zo, 
or if Ap = 0, y’(z) is regular as z+z0 .  
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FIGURE 1. Overview of the experimental hcility,showing the rectangular stratified reservoir in the 
background, the convergent-divergent channel in front of the white screen and the withdrawal sinks in the 
foreground. 

(b) 
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FIGURE 2. (a) Details of the contraction, the downstream section of the channel and the withdrawal sinks. 
(b) Top view of the convergent-divergent section of the channel drawn to scale. 

ARMI &WILLIAMS (Fixing p.360) 
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FIGURE 3. (a) Internal self-similar flow (structure 1) with the withdrawal slit at the bottom of the channel. 
(b) Streak photograph of a portion of the flow, indicated by the. inset lines, shown in (a). 

FIGURE 6. Internal self-similar flow (structure 2) with the withdrawal slit 11.5 cm above the bottom of 
the channel. 

ARM & WILLIAMS 
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FIGURE 7. (a) Enclosed self-similar flow with nearly uniform flow upstream. In the divergent section the 
structure-1 flow has a separation isopycnal, remains supercritical and flows into a withdrawal slit at the bottom 
of the channel. (b) Streak photograph of a portion of the flow, indicated by the inset lines, shown in (a). 

FIGURE 9. Enclosed self-similar flow with nearly uniform flow upstream. In the divergent section the 
structure-1 flow has a separation isopycnal, remains supercritical and flows into a withdrawal slit at the top 
of the channel. The flow is an inverted version of the flow in figure 7(a). 
ARMI &WILLIAMS 
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FIGURE 15. (a) Enclosed self-similar flow with nearly uniform flow upstream. In the divergent section the 
structure-2 flow has a separation isopycnal, remains supercritical and flows into withdrawal slits at the top 
and bottom of the channel. (b) Streak photograph of a portion of the flow, indicated by the inset lines, shown 
in (a). 

FIGURE 17. Enclosed self-similar flow with nearly uniform flow upstream. In the divergent section the 
structure-2 flow has a separation isopycnal, remains supercritical and flows into a withdrawal slit at the centre 
of the channel. 

ARMI &WILLIAMS 



Journal of Fluid Mechanics, bl. 251 

(4 

Plate 5 

FIGURE 18. (a) Internal self-similar flow controlled at the narrowest section. The two downstream withdrawal 
slits have a vertical separation of 5 cm. (b) Subcritical internal self-similar flow controlled downstream with 
bifurcation to two jets in the divergent section of the channel. The two downstream withdrawal slits have a 
vertical separation of 7 cm. (c) Two separate internal self-similar flaws, each controlled at the n m s t  
section. The two downstream withdrawal slits have a vertical separation of 9.5 cm. 

ARMI & WILLIAMS 
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FIGURE 10. Flow in a region of constant channel width close to the reservoir. Vertical dye streaks show top 
and bottom boundary layers and small velocity defect at mid-depth. 

FIGURE 19. Subcritical internal self-similar flow controlled downstream with bifurcation to two jets in the 
divergent section of the channel. The two downstream withdrawal slits are at the bottom of the channel and 
7 cm above the bottom of the channel. 

FIGURE 20. Separating flow with the withdrawal slit 12 cm above the bottom of the channel. 

ARM & WILLIAMS 
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We want to find reservoir functionsfiz) that allow a solution to connect smoothly from 
the reservoir to the narrowest point in the channel. The self-similar solution has the 

(9) 
form 

The relationship between density surface height and channel width k(A) is found by 
applying the upper boundary condition (8b). Using the self-similar solution (9) in the 
upper boundary condition (8b) ,  we find Ak2(1 -k) =f(zo)/2Apzo, a constant. The 
narrowest section, where h = 1, is a minimum value of h and so dh/dk = 0, which leads 

y = k(A)z. 

to 
and (6) becomes 

A(k2-k3) = 6 

Az) = K ( A p z o - r p ’ i d i ) .  27 

This solution, with Ap = 0, was first found by Wood (1968), and has also been 
discussed by Yih (1969), who showed that it is one of a class of stratified flows, 
governed by a model based on the shallow-water approximation, whose stream 
surfaces duplicate those found for the corresponding flow of a homogeneous fluid. 
Benjamin (1981) generalized Wood’s result to the form given here and went on to show 
that the self-similar solution is critical at the narrowest section with respect to small 
long-wave disturbances of the lowest mode and is supercritical with respect to all 
long-wave modes in the divergent section of the channel. 

The self-similar solution is the only solution to (8a, b) that has been found. In a 
continuously stratified reservoir, for a particular flow rate, a range of densities p(0) to 
p(z& flows from the reservoir. As the flow rate changes, the flow remains self-similar 
while the range of densities drawn from the reservoir changes so that the flow at the 
narrowest section remains critical with respect to the lowest wave mode. Since this flow 
withdraws fluid from a limited range of densities, we call it an internal self-similar flow. 

Velocity profiles measured at the narrowest section and 10 cm upstream and 
downstream of the narrowest section are shown in figure 5(a-c) for the flow shown in 
figure 3 (a, b).  The theoretical self-similar velocity profile is also shown as a solid line. 

Throughout the channel, the theory predicts a velocity profile that is somewhat 
thinner and faster than observed, primarily an effect of the sidewall boundary layers. 
These boundary layers become thicker with downstream position and effectively move 
the most constricted section downstream of the narrowest section; the effective width 
at this section is also smaller than the measured width. In the vicinity of the narrowest 
section, the height of the density surfaces and the velocity profile are sensitive to 
variations in channel width and hence also the thickness of the sidewall boundary 
layers. Nonetheless, the global structure of the flow is accurately predicted by the 
theory; only the downstream displacement of this structure, due to the sidewall 
boundary layers, is sensitive to frictional effects. This also occurs in single-layer 
hydraulics. 

While the detailed structure of the boundary layers in the accelerating flow is beyond 
the scope of this work, a correction for their effect on the internal hydraulics can be 
made. Using the relationship 

Qtotsl = i n 4  b, (- gp’/pO)’ 
from (7) and (1 l), the total volume flux Qtotal and the observed depth of the moving 
fluid far upstream zo are used to calculate the effective width of the channel at the 
narrowest point b,; po is the density and p’ is the density gradient at the upstream 

2.3. Comparison of the internal self-similar solution with experiments 
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FIGURE 5. Velocity profiles for the internal self-similar flow (structure 1) shown in figure 3(a). (a) 
10 cm upstream of the narrowest section, channel width b = 2.9 cm, non-dimensional channel width 
b' = 1.45, channel width parameter A p / x  = 0.47. (6) At the narrowest section, 6 = 2.0 cm, b' = 1 ,  
A p / x  = 0. (c) 10 cm downstream of the narrowest section, b = 2.5 cm, b = 1.25, A p / x  = 0.26. The 
solid line shows the theoretical self-similar velocity profile, and the dashed line shows the self-similar 
velocity profile for the actual measured depths of the flow. 

reservoir. The total depth of the moving fluid at each of the three stations shown in 
figure 5 is then used to calculate the effective width at these stations. Finally, the actual 
channel width at these stations is known and the effective boundary-layer thickness can 
be compared with that estimated from laminar boundary-layer theory. 

For the experiment shown in figures 3 and 5, an upstream depth of 12.7 cm gives an 
effective most constricted width of 1.6 cm. This effective most constricted width occurs 
where all the isopycnals of the self-similar flow have dropped to two thirds of their 
individual reservoir heights. Inspection of figure 3 shows this to occur for this flow 
about 5 cm downstream of the narrowest section. For the measurement stations, 
boundary-layer thicknesses of 0.5, 1 and 4 mm are needed to give the depths shown in 
figures 5(a) ,  5(b), 5(c) respectively. These are in agreement with a boundary-layer 
thickness scale, a2 = v L / U ;  with U = 2 cm/s and L = 20 cm, 6 = 3 mm. It is beyond 
the scope of the present work to compute the thickness of the boundary layer in the 
convergent-divergent contraction. The dashed lines in figure 5 (a-c) show the self- 
similar velocity profiles for the measured depths of this flow. The agreement between 
the correction for sidewall boundary layers and the measured velocities is good for the 
stations in the convergent and narrowest sections. In the divergent section, figure 5(c) ,  
the correction underestimates the velocities and total transport by approximately 20 YO. 
Here, in spite of the fact that the expansion is extremely gradual with a tangent of less 
than 5 %  (figure 2b), the sensitivity to this tangent when the flow is close to critical 
results in isopycnal slopes as large as 15". The vertical velocity component is about a 
quarter of the horizontal component; hence some of the vertical displacement of the 
isopycnals has gone into this component of the kinetic energy. From the energetics 
alone this amounts to a horizontal velocity error of about 10%. Also, as the flow 
accelerates in the divergent section a weak velocity field is induced above the separation 
isopycnal due to viscosity at the interface. 

A different internal self-similar flow, obtained by withdrawing fluid from 11.5 cm 
above the base of the channel, is shown in figure 6 (plate 2). The moving region is now 
bounded both above and below by stagnant fluid and the vertical dye lines show a 
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structure-2 velocity profile, having a velocity maximum at the centre of the region of 
moving fluid. The thickness of the withdrawn region is controlled by the total volume 
flux, and the vertical position of the withdrawn fluid is controlled by the height of the 
sink. The dye lines show that, as in the structure-1 flow discussed above, the vertical 
extent of the velocity field is greater than is apparent from observing the range of 
isopycnals that form the rapidly moving jet in the divergent section of the channel. 

2.4. Enclosed self-similar solutions 
As the flow rate increases, the self-similar flow draws fluid from an increasingly large 
range of densities. There is a critical flow rate above which fluid at all depths is drawn 
from the reservoir, and Ap is then the density step at the free surface. In this situation, 
if the density variation within the fluid is small and the density step at the free surface 
is approximately equal to the mean density of the moving fluid, the first term in (1 1) 
dominates the reservoir function of the self-similar solution and the flow is nearly 
vertically uniform at every section of the channel. The speed of the lowest mode 
barotropic wave is much greater than the speeds of the baroclinic modes, and as long 
as the fluid velocities are much less than this barotropic wave speed, our attention can 
be restricted to internal hydraulics by assuming that the free surface is level. If we in 
addition make the Boussinesq approximation, the governing equation (8 a) is 
unchanged, the boundary conditions (8 b) become 

and the self-similar solution, now called an enclosed self-similar flow, is 
y(0) = 0 and y(zo) = zo (12) 

y = z  (134 

and f = Po q2/&. (136) 
The reservoir function and the flow rate per unit depth are both constant, and po is the 
mean density of the fluid. In this approximate solution, the density surfaces are 
horizontal as the fluid flows through the contraction, and the fluid velocity, 

is vertically uniform at any point along the channel. The solution is symmetric about 
the narrowest section; if the solution were to exist in the divergent section, it would 
simply decelerate with level stream surfaces just as the solution in the convergent 
section accelerates. 

2.5. Enclosed self-similar flows 

A flow of this type is shown in figure 7(a) (plate 3), in which fluid was withdrawn from 
a slit at the bottom of the channel. For now, we will only discuss the flow in the 
convergent section of the channel, which is on the right-hand side of the photograph. 
The vertical dye line and horizontal isopycnals upstream of the narrowest section show 
that fluid at all depths is flowing into the contraction and that the flow is vertically 
nearly uniform apart from the top and bottom boundary layers. The velocity profile 
10 cm upstream of the narrowest section, shown in figure 8(a), also shows that the 
velocity in the convergent section of the channel is vertically nearly uniform. 

As with the internal self-similar flow, the enclosed flow passes through an infinite 
sequence of virtual controls as it flows from the stagnant reservoir into the channel and 
these controls determine the vertical structure of the flow. However, at the narrowest 
section this flow is supercritical with respect to all the internal modes while the free- 
surface mode is very subcritical and hence acts as a rigid lid. Information about the 
vertical structure of the downstream conditions cannot propagate through the 
contraction and only the free surface level and total flow rate are controlled 

l.4 = q/b, (14) 
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FIGURE 8. Velocity profiles of the enclosed self-similar flow with structure-1 separating flow in the 
divergent section shown in figure 7(u). (a) 10 cm upstream of the narrowest section, b = 2.9 cm, 
6' = 1.45, AB/x = 0.28. (b)  At the narrowest section, b = 2.0 cm, b' = 1, AP/n = 0, = 0 . 6 2 ~ .  
(c) 10 cm downstream of the narrowest section, b = 2.5 cm, b' = 1.25, AB/rr = 0.16. 

downstream; the flow in the convergent section of the channel is independent of the 
downstream conditions. Figure 9 (plate 3) shows a flow similar to that of figure 7(a)  
but with the withdrawal slit at the top of the channel instead of at the bottom. The 
vertical dye line in the convergent section of the channel again shows a vertically 
uniform flow, clearly showing that in the convergent section, these flows are 
independent of the downstream conditions. For the stratifications considered here, the 
predicted velocity difference between the top and bottom of the channel is less than 
1%, and so we will use the Boussinesq theory when making comparisons between 
theory and experiments. Notice that the uniform velocity profile is the same as the 
upstream conditions used by Long (1955) when studying experimentally flow over a 
towed ridge, but here the velocity profile is determined by the series of virtual controls 
rather than being prescribed. 

An interesting experimental aside was observed in the convergent section of the 
channel. Departure from vertically uniform flow is obvious in the boundary layers at 
both the free surface and at the bottom of the channel. In the slow moving region close 
to the reservoir, these boundary layers cause a significant variation in the whole of the 
vertical velocity profile that can be explained by arguments similar to those used to 
study frictional effects in conventional open channel flows. Figure 10 is a photograph 
of vertical dye lines in a parallel-sided section of the channel that is about five times the 
width of the narrowest section and is located in the convergent part of the channel. 
(Figures 10, 19 and 20 are on plate 6, a plate showing figures outside of the main thrust 
of the paper.) The flow rate is such that this is an enclosed self-similar flow, so the 
velocity profile in the convergent section is theoretically nearly uniform. At a particular 
streamwise location in the subcritical portion of the flow, frictional effects require the 
flow to have more potential energy and less kinetic energy than the frictionless theory 
would predict. It is also necessary for the total energy to be greater than that predicted 
by frictionless theory, the excess being dissipated in the boundary layers as the flow 

13-2 



364 L. Armi and R.  Williams 

moves through the contraction. In a single-layer flow this means that the flow is slower 
and deeper than otherwise predicted. In the flow shown here, the boundary layers are 
approximately vertically symmetric and so are to first order a second mode effect. This 
suggests that when the flow is subcritical with respect to the second mode, as in the 
wide channel shown in figure 10, there will be less kinetic energy and more potential 
energy in this mode than theoretically predicted. Lower kinetic energy in this mode 
explains both the velocity defect in the centre of the channel and the smoothness of the 
velocity profile seen in figure 10. Effects of the increased potential energy, in principle 
observable by slightly displaced isopycnals, were not seen. Owing to the constraint 
imposed by the mode-2 virtual control, upstream of this virtual control the boundary 
layers have a pronounced effect on velocities at all depths. 

3. Separating isopycnals : deceleration towards a virtual control 
If the density surfaces remained level in the divergent section of the channel, the 

enclosed self-similar flow would simply decelerate in the divergent section. This flow 
would be symmetric about the narrowest section and the flow would become 
subcritical with respect to various internal modes as the channel diverged. However, we 
are studying flows with highly non-uniform downstream conditions and so this does 
not happen. Similarly, in the two-layer virtually controlled experiments of Armi (1986), 
the flows in the convergent section of the channel were uniform, but in the divergent 
section always remained supercritical and accelerated either the upper or lower layer. 

For the flow shown in figure 7(a), with the withdrawal point at the bottom of the 
channel, the flow remains supercritical with respect to the lowest internal mode in the 
divergent section of the contraction. Downstream of the narrowest section, the moving 
fluid separates at the upper boundary and flows below a region of nearly stagnant fluid, 
forming a fast moving supercritical flow on the bottom of the channel. This flow is 
sheared, with higher velocities at the bottom of the channel, and is not self-similar. 
There is a transition from a structure-0 flow in the convergent section to a structure- 
1 flow in the divergent section. A streak photograph of a part of this flow in the 
divergent section is shown in figure 7 ( b ) .  

3.1. Bifurcations of the enclosed self-similar solution 
We now look for bifurcations of the self-similar solution at  some point in the channel, 
giving a non-self-similar solution downstream of the bifurcation point. In the two-layer 
system, solutions of this nature have been found and demonstrated by Armi (1986). We 
will examine this possibility in the enclosed, continuously stratified Boussinesq system, 
in which the fluid velocity is vertically uniform within the self-similar flow. We seek 
solutions that are controlled and asymmetric about the narrowest section. The 
solutions will have uniform flow upstream of the bifurcation point but will be non- 
uniform downstream of that point. This will allow different upstream and downstream 
reservoirs to be linked, although the question of the form of the internal hydraulic 
jump that typically occurs to connect the supercritical flow in the divergent part of the 
channel to the subcritical downstream reservoir condition is not considered here. 

The governing equation (8a)  is rewritten as 

2fy” -yy - - z )  = o (15) 
and the boundary conditions are given by (12). Since the enclosed self-similar solution 
is y = z ,  the problem is restated in terms of the deviation from this solution: 

w(z )  = y-z .  (16) 
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Sincefis constant in the enclosed self-similar solution, the following are obtained upon 
substitution of (16) into (15) and (12): 

Equation (17a) will now be transformed so that the local stream surface height y is 
the independent variable. The definition of w, (16), is used to obtain 

and 

and so the problem becomes 

dr dydz 

d2w d2w dw p=v( 1+- dz) , 

w(0) = 0 and w(yo) = 0, (18b) 
in which w = w(y) but p' is in general a function of z, and hence a function of (y- w). 

We will now restrict our attention to a linear density profile and will non- 
dimensionalize the problem, using the reservoir depth zo as the vertical scale for w and 
y .  The governing equation (1 8 a) for the deviation in the height of a stream surface from 
its upstream value becomes 

d2w 
- + p w  = 0 
dY2 

along with the boundary conditions 

The channel width and flow rate are represented by the parameter 
w(0) = 0, w(1) = 0. (19b) 

p2 = -gp'b2z:/p" q2, (20) 
which is independent of y. Equation (19a) is similar to the shallow-water 
approximation of the governing equations derived by Long (1953) when studying flow 
over a ridge. The difference is that here p depends on the local channel width as well 
as the upstream conditions and so the topographic variability enters the governing 
equation rather than the boundary conditions, as occurs in the study of flow over a 
ridge. Note that /3 is an inverse bulk Froude number and when w = 0, the velocity is 

(21) 

(22) 

The lower boundary condition gives B = 0 and the upper boundary condition gives 
/?,,, = mn where m is a positive integer, and so /? is constant in any non-trivial solution. 
Note that the p, give the positions of the virtual controls of the enclosed self-similar 
flow. Since /? is related to the channel width and is constant in all non-trivial solutions, 
there are no solutions away from the virtual controls other than the flow with level 
stream surfaces, in which w = 0 everywhere. 

The form of non-trivial solutions of (19) that exist at more than an isolated value of 
p are suggested by the solutions for the flow over a ridge of a linearly stratified 
Boussinesq fluid found by Smith (1985). To study flow through a contraction we, like 
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Smith, introduce a layer of stagnant fluid of constant density at the top of the channel 
and look for a solution with the moving fluid at the bottom of the channel, as shown 
in figure 7(b). An analogous inverted problem is obtained by introducing the stagnant 
layer at the bottom of the channel as in figure 9: which flow actually occurs depends 
on the downstream conditions. We call the point at which the stagnant-layer thickness 
is zero the separation point as in Armi & Farmer (1986) and Williams & Armi (1991); 
we assume that the pressure at the separation point is hydrostatic since the front 
associated with the stagnant fluid is wedge like. This will be a reasonable approximation 
as long as the channel geometry is such that the slope of the density surfaces 
downstream of the separation point is small. 

Downstream of the separation point, the moving and non-moving regions are 
separated by a dividing streamline, and the deflection of this streamline from the 
upstream height z = 1 is given by wo. Thus the stagnant-layer thickness is -wo and 
wo < 0 everywhere. The continuity equation ( 5 )  is used to find that the velocity 
downstream of the separation point is 

u(y)  = us- 1-- , pa.( 2) 
where subscript s refers to values at the separation point. The problem is now one of 
matching the self-similar flow to the separated flow and, downstream of the separation 
point, finding the height of the separation streamline. 

A new boundary condition applies on the separation streamline at the top of the 
moving fluid. This is found by considering Bernoulli's equation and the continuity 
condition on the streamline. At the separation point, the velocity at the free surface is 
us and at some downstream location, the velocity is u. Applying Bernoulli's equation 
along the streamline gives u = us. Using this result in (23) evaluated at the separation 
streamline, we find that the boundary condition at the top of the moving fluid is 

We also define the change in height of the dividing streamline as 

while the lower boundary condition remains 

Applying (26) to the general solution (28) gives 

The two conditions at the upper boundary, (24) and (25), are then used to find 

W y ( Y 0 )  = 1 -PIP,. (24) 

W ( Y 0 )  = wo, (25) 

w(0) = 0. (26) 

(27) 

(28 4 
(28 b) 

w(y) = A sin By. 

tan M N J O  + 111 = wo P P s / ( P s  -PI, 
A = wo/sin [p(wo + l)]. 

The streamwise derivative of (28a) at the narrowest section (where dA/dx = 0) gives 

where Pn and won are the values of ,8 and wo at the narrowest section. A solution will 
be asymmetric about the narrowest section if dwon/dx =l= 0, and (29) then requires that 

(30) 
Using (28a), Ps is then found to be 

(3 1) 

P n  won = isin PPn(l+ won)]. 

P s  = Pn/sin'[p,(1+ wonll. 



Stratified fluid flowing through a contraction 

(4 

367 

0.3 r 
0.2 

0. I 

c 

j r ” 0  

-0.1 

-0.2 

- 

- 

(4 6n - 

4n - 

6 

2n - 

I I I I 
0 . 5 ~  n 1.5n 2 . h  2 . 5 ~  

B n  
0.784511 

FIGURE 1 1. (a) won us. /3,: deviation of dividing streamline us. the channel width parameter, evaluated 
at the narrowest section, from (30). (b) /3, us. /3,,: channel width parameter at the separation point us. 
the channel width parameter at the narrowest section, from (31). 

For a particular minimum channel width, (30) allows won, the stagnant layer depth at 
the narrowest section, to be found and then (31) determines /3,, the channel width at 
the separation point. This allows us to find all possible solutions with wo asymmetric 
about the narrowest section. Notice that won < 0 in all physically realizable solutions. 

Equations (30) and (31) are plotted in figure 11 (a, 6). If one considers a channel of 
fixed dimensions and a fluid of fixed depth, the definition of /3, (20), shows that 
increasing values of /3, correspond to a decreasing total volume flux. In the range 
;A < /3, < A, the solution can be continued from the separation point to the narrowest 
section only if /3, < A. Since this is the value of /? in the lowest mode solution of 
(19a, b), a continuous solution exists only if the uniform flow is critical or supercritical 
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FIGURE 12. Separating flow solution for /I, = in, /Is = in: heights of equally spaced density surfaces 
and velocity profiles a t  three locations. The horizontal axis is labelled with A/?/K, the change in p from 
its value at  the narrowest section, and with b’ = b/b,, the non-dimensional channel width. A plan 
view of the channel is shown at  the top of the figure. 

with respect to the gravest internal mode at the separation point ; there are solutions 
from /3, = in, /3, = $x to /3, = 0.7845x, /3, = x. When /3, < x and x < /3, < :x, no 
solutions that smoothly connect the separation point to the narrowest section have 
been found. When /3, 2 :x, figure 11 (b)  shows that there are multiple values of p, for 
a particular /3,. A solution that smoothly connects the separation point to the 
narrowest section can only be found for the largest /3,, and so only that p, represents 
a real flow. 

When /3, < x and /3, > x, we have not been able to find a solution that matches the 
enclosed self-similar flow to a separating flow that reaches the narrowest section. 
Under these conditions, the separation point is upstream of the virtual control of the 
lowest internal mode so the enclosed self-similar flow is not necessarily the only flow 
that can come from the stagnant reservoir. It is possible that there are solutions that 
match a non-self-similar enclosed flow coming from the reservoir to a separating flow 
upstream of /3, = x to give a smooth asymmetric solution, but we have not found such 
a solution. 

A separating flow with j3, = in is shown in figure 12. The separation point occurs at 
the narrowest section and is also the control point. A separating flow with p, = 
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FIGURE 13. As figure 12 but for j3, = 0.7845~, /3, = X. 

0.78451~ is shown in figure 13. Here, the separation point is upstream of the narrowest 
section, and the flow is again controlled at the narrowest section. Each solution is 
shown as the height of various density surfaces and the velocity field at various points 
in the channel. The velocities are normalized with the velocity at the narrowest section 
for the flow with p,, = in. In these figures, the channel width varies linearly along the 
horizontal axis and so in the vicinity of the narrowest section does not represent a 
slowly varying channel. This gives rise to the rapidly varying density surfaces seen in 
the figures, which would not occur if the solutions were plotted on a realistic slowly 
varying channel geometry. 

In the separating flow solutions (figures 12 and 13), the density surfaces shown are 
equally spaced at the separation point but converge more rapidly at the bottom of the 
moving fluid as the fluid moves downstream and the depth of the moving fluid 
decreases. Thus the lower part of the moving fluid is accelerated while the velocity at 
the top remains constant. The density surfaces in the self-similar solution maintain the 
same relative spacing throughout the channel and, while the magnitude of the 
maximum velocity increases as the depth of the moving fluid decreases, the velocity 
profile, like the density profile, is everywhere self-similar. 

When nn c pn < (n ++) x ,  figure 1 1 (a) shows that won is positive, so these solutions 
are not physically possible. Of particular interest is the region /?, c ix, where the flow 
rate is higher than for the flow shown in figure 12. A solution exists in which the 
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FIGURE 14. As figure 12 but for /3, = fn, /I, = fn. 

enclosed self-similar flow simply passes through the narrowest section, accelerating as 
the channel converges and decelerating as the channel diverges, and a separation point 
occurs in the divergent section at the point at which the channel width has increased 
to p = p,, = t x .  In this case, the flow is controlled not at the narrowest section but at 
the separation point, and downstream of this point the flow is exactly that shown in 
the divergent section of figure 12. Similar behaviour has been found for single-layer 
(Armi & Farmer 1986) and two-layer plunging flows (Williams & Armi 1991). These 
solutions must be viewed with caution since at the separation point, db/dx 4= 0 and so 
dw/dz -+ 00 and the assumptions of the model are violated. 

Figure 1 1 (a) shows that there are ranges of p,, > x where won < 0, and solutions can 
be found for these ranges of p,,. The solutions all contain at least one region in which 
the density surfaces diverge downstream of the separation point and all reach a value 
of p in the divergent section where dy/dz c 0, and so the fluid is statically unstable in 
some part of the channel. The solution for /3, = /3, = :x is shown in figure 14. In this 
solution, and in all others like it, the first downstream location at which dy/dz < 0 is 
quite close to the separation point. The presence of a region of statically unstable fluid 
suggests looking for solutions with more than one region of stagnant, constant-density 
fluid. The simplest flow of this type has symmetric stagnant regions at the top and 
bottom of the channel, and the flow is confined to a jet in the centre of the channel. 
It is also possible to find a flow with multiple jets, decoupled from each other by regions 
of stagnant fluid. As in the case of a single jet at the centre of the channel, a solution 
is found by stacking multiple vertically rescaled copies of the solution just described, 
inverting every other copy. This scenario leads to a flow with multiple jets, with 
intervening regions of stagnant fluid that all start at the same alongstream location. 
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3.2. Comparison of experiments with theory for bifurcating flows 
For the flow shown in figure 7(a ,  b) velocity profiles at the narrowest section, and 
10 cm downstream of the narrowest section, are shown in figure 8(b, c).  The moving 
region at the narrowest section extends to the free surface, where there is a thin 
boundary layer; the lack of data points above 17 cm in figure 8 (b)  is due to a lack of 
clear particle streaks. Figure 8 also shows velocity profiles using the channel width 
parameter (20). 

For this flow, at the narrowest section p,, = 0 . 6 2 ~  and the theory predicts the 
separation point to be somewhat upstream of the narrowest section. The fact that the 
separation point is further downstream and the moving region in the divergent section 
is thicker than predicted by theory can again be explained, as in $2, by considering the 
effect of growing sidewall boundary layers on both the effective channel width and the 
effective positions of the narrowest section. The observed vertical structure of the 
velocity profile in the divergent section is similar to that predicted by the theory. 

The interface between the moving fluid and the theoretically stagnant region is 
unstable. This is seen in figure 7 (b),  a streak photograph of the region downstream of 
the narrowest section. At the bottom of the channel the supercritical jet can be seen, 
and above this, large eddies caused by instability of the interface between the jet and 
the overlying fluid are apparent. Above these eddies, the streak photograph and the 
vertical dye lines in figure 7 ( a )  also show that there are considerable turbulent motions 
in the overlying fluid, but the mean velocity is slow, in agreement with the theory. In 
fact, the turbulence helped form this region of nearly stagnant fluid. 

The upside-down version of the flow shown in figure 7(a) is seen in figure 9, a flow 
with the withdrawal slit at the top of the channel. This flow also has a transition from 
a structure-0 to structure- 1 profile and the flow is again nearly uniform upstream of the 
narrowest section. In the divergent section of the channel, the flow separates from the 
base of the channel to match the downstream condition imposed by the withdrawal slit. 
The theoretical description of the flow is almost exactly an inverted version of the flow 
shown in figure 7 ,  and using the Boussinesq approximation makes the symmetry of the 
theoretical description exact. 

A more complex separating flow, shown in figure 15(a) (plate 4), was studied by 
withdrawing fluid from both the top and bottom of the channel at equal flow rates. The 
total volume flux was high enough that the flow coming from the reservoir was 
supercritical at the narrowest section with respect to the mode controlling structure 2 
and was vertically uniform. In the divergent part of the channel, there is a transition 
to a structure-2 profile as the flow splits into two supercritical portions, separated by 
a region of stagnant, constant-density fluid which dynamically isolates the two moving 
regions. If the flow is considered to be Boussinesq, the two moving regions are each 
dynamically identical to the flows shown in figures 7 and 9. 

A particle streak photograph of the flow in the divergent section of the channel, 
figure 15(b) (plate 4), dramatically illustrates the region of stagnant fluid. Velocity 
profiles of the flow, measured at the narrowest section and 1 O c m  upstream and 
downstream of the narrowest section, are shown in figure 16(a-c). At the narrowest 
section p,, = 0.651. This figure also shows theoretical velocity profiles. The deviations 
from the theory are similar to those discussed earlier. Close to the separation point 
there is considerable curvature of the streamlines and just upstream of the separation 
we again observe vertical shear not predicted by the hydrostatic theory (figure 16b). 

Just as there were two possible transitions from structure 0 to structure 1, there are 
also two possible transitions from structure 0 to structure 2. Figure 17 (plate 4), the 
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FIGURE 16. Velocity profiles of the enclosed self-similar flow with structure-2 separating flow in the 
divergent section shown in figure I5(a). (a) 10 cm upstream of the narrowest section, b = 2.9 cm, 
b’ = 1.45, A ~ / K  = 0.29. (b) At the narrowest section, b = 2.0 cm, b’ = 1, AP/n = 0, 8, = 0.651 
(c)  10 cm downstream of the narrowest section, b = 2.5 cm, b’ = 1.25, AP/n = 0.16. 

second flow of this type, was made by placing the withdrawal slit at  the centre of the 
channel. The flow in the convergent section of the channel is vertically nearly uniform, 
and is identical to that shown in the other flows discussed in this section. In the 
divergent section, the flow accelerates as a supercritical structure-2 jet at mid-depth. 
Although not shown, flows with higher-order structure in the divergent section have 
been made by using more withdrawal slits. 

4. Subcritical internal self-similar flows 
For a particular reservoir stratification and flow rate, the range of density surfaces 

that flow through the contraction in the internal self-similar flow were shown in $2 to 
be determined by the control at the narrowest section. Here, we explore the result of 
breaking this constraint by arranging the downstream conditions to withdraw fluid 
from a greater range of densities than required by a controlled internal self-similar 
flow. 

A series of experiments were performed with two downstream withdrawal slits with 
equal volume flux flowing into each slit. Figure 2(a) is a photograph of the experiment 
that shows the two withdrawal slits. The flow rates were low and the withdrawal points 
were located so that in all cases the moving fluid is bounded above and below by 
stagnant fluid rather than by the upper or lower boundaries. When there is only one 
withdrawal point, a structure-2 internal self-similar flow, similar to that shown in figure 
5,  occurs. A series of flows with the same total volume flux but increasing sink 
separations are shown in figure lS(u-c) (plate 5) .  

In figure 18(a), the withdrawal slots are 5 cm apart and the flow is similar to that 
shown in figure 5.  The flow is still controlled at the narrowest section and has a 
structure-2 velocity profile in most of the channel. The downstream conditions cause 
a weak varicose-like internal hydraulic jump in the divergent section of the channel, 
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approximately 14 cm downstream of the narrowest section, to a subcritical flow that 
still has a structure-2 profile. This is characterized by a slight spreading of the 
isopycnals, while the vertical dye lines show the form of the velocity profile. 

The effect of increasing the sink separation to approximately 7 cm is shown in figure 
18(6). A larger view of this flow, showing the downstream sinks, is shown in figure 
2(a). The internal hydraulic jump has propagated upstream through the control and 
the flow at the narrowest section is now subcritical with respect to the lowest mode, 
which controls structure 2. The range of moving isopycnals is now controlled by the 
downstream conditions. The vertical structure of the flow coming from the stagnant 
reservoir is still determined by the virtual controls in the convergent section and so, 
despite the lack of a control at the narrowest section, the flow coming from the 
stagnant reservoir is again an internal self-similar flow with vertical structure 2. Since 
the flow is subcritical with respect to structure 2, in the immediate vicinity of the 
narrowest section the flow is symmetric and thickens as the channel diverges, just as it 
thins as the channel converges. This symmetry makes the location of the effective 
narrowest section readily apparent ; it is about 5 cm downstream of the geometric 
narrows. The symmetric behaviour does not continue far downstream. The flow at the 
narrowest section is supercritical with respect to the internal mode which controls 
structure 4 and, as the channel diverges, the flow slows and approaches the virtual 
control for that mode. As in the two-layer flow studied by Armi (1986), the flow 
remains supercritical with respect to the higher mode; here is splits into a flow with 
structure 4, having two internal jets as the channel diverges. 

A flow with a sink separation of 9.5 cm is shown in figure 18 (c). With this larger sink 
separation, the flow divides into two jets that are separated by a region of stagnant fluid 
at all points in the channel. There are now two dynamically isolated structure-2 flows, 
each controlled at the narrowest section. 

Similar behaviour was seen when the flow was bounded below by the bottom of the 
channel. Figure 19 (plate 6) shows a flow with one sink at the bottom of the channel 
and a second sink 7 cm above the bottom of the channel. The volume flux into each 
sink was equal. The behaviour is analogous to that shown in figure 18(b) except that 
the upstream velocity profile has structure 1 and the bifurcation in the divergent section 
is to a flow with structure 3. 

A complex flow, involving bifurcations of both external and internal flows, is shown 
in figure 20 (plate 6). The total volume flux is such that there is an enclosed self-similar 
flow in the convergent section of the channel. The complex behaviour in the divergent 
section arises when the withdrawal slot is significantly off mid-depth. Here, it is 12 cm 
above the bottom of the channel, and the total depth is 18 cm. In the divergent section 
of the channel, close to the narrowest section, the flow looks like the simple separating 
flow shown in figure 9. Further downstream, as the channel diverges, a second region 
of stagnant fluid appears and there is a transition from a structure-1 to a structure-2 
velocity profile. Since the structure- 1 flow is supercritical downstream of the narrowest 
section, we propose that in order for the transition to a structure 2 flow to take place, 
the flow must first pass through a weak hydraulic jump to a subcritical structure-1 flow. 
Then, as the channel diverges, the subcritical structure-] flow slows and deepens as it 
approaches the structure-2 virtual control. The flow separates from the upper 
boundary, flows beneath a second layer of stagnant fluid and continues downstream as 
a supercritical structure-2 flow. 
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4.1. Bifurcations of the internal self-similar solution 
In order to consider the possibility of asymmetric solutions in the divergent section of 
the channel, we look for bifurcations of the internal self-similar solution. We restrict 
our attention to the linear density profile. The form of the self-similar solution suggests 
seeking solutions of the form 

y = k(h)z+Ew. (32 )  
This is substituted into (8a)  and terms of O(E) give 

[(1-z’)w’]’+(-)w=o. k 
1 -k (33)  

This is Legendre’s equation, and non-trivial solutions w = P,(z) exist only if 
k/(l -k) = m(m+ 1). For flows with the moving fluid against the bottom of the 
channel, w = 0 at z = 0 and so m = 2n - 1. This defines a series of values of k, and 
hence of channel width, at which a bifurcation of the solution is possible. Each of these 
points is a place at which the solution admits a stationary disturbance. The case 
n = 1, k = is the control at the narrowest section. The other eigenvalues are the virtual 
controls of the self-similar flow. Guided by the analogous results seen in the two-layer 
flows and in the separating flows discussed in # 3 ,  downstream of the bifurcation we 
expect the flow to split into multiple jets that are supercritical with respect to the mode 
that is critical at the bifurcation. 

With a similar approach, Benjamin (1981) looked for solutions adjacent to the self- 
similar solution and found that the same set of eigenvalues, here identified as virtual 
control points, were points that prevented the existence of a solution with a slightly 
perturbed reservoir function. In a complementary result, we see that when the reservoir 
function is not perturbed, the virtual control points allow branching of the self-similar 
solution. 

5. Discussion 
The series of experiments and solutions discussed here show major aspects of the 

hydraulics of a continuously stratified fluid as it flows from a stagnant reservoir 
through a contraction. Of particular importance are the strong constraints on 
upstream conditions due to the presence of a sequence of virtual controls as the flow 
leaves the stagnant reservoir. The upstream flow is always self-similar, and complex 
downstream conditions can only lead to upstream conditions that are either a single 
self-similar flow or a set of decoupled self-similar flows separated by non-moving 
stratified regions. There are two forms of the self-similar flow. One, which occurs when 
fluid is withdrawn from a limited range of densities, has a strongly depth-dependent 
velocity profile and we refer to it as an internal self-similar flow. The other, which 
occurs when fluid is withdrawn from all levels in the reservoir, has a nearly uniform 
vertical velocity profile and we refer to it as an enclosed self-similar flow. 

Another important feature of the flows shown here is the presence of regions of 
stagnant, constant-density fluid. The controlled internal self-similar flows, which are 
asymmetric about the narrowest section and are fully supercritical in the divergent 
portion of the channel, have these regions throughout the channel. We have also 
demonstrated both internal and external self-similar flows that are not controlled at the 
narrowest section. In these cases, the flow at the narrowest section is subcritical with 
respect to the lowest mode but is supercritical with respect to higher modes. Since the 
flow at the narrowest section is subcritical, it is symmetric about the narrowest section 
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and, as the channel diverges, the flow decelerates and approaches a virtual control with 
respect to a higher wave mode. Instead of passing through the virtual control and 
becoming subcritical with respect to that internal mode, the flow remains supercritical 
with respect to that mode and forms one or more fast-moving regions as the channel 
diverges. When this happens, separating isopycnals and regions of stagnant constant- 
density fluid always form in the divergent section of the channel. 

Owing to the limited size of the experimental facility, most of the experiments shown 
here were conducted at low enough Reynolds numbers (approximately 500, based on 
the velocity and channel width at the narrowest section) that the flows were stable and 
mixing did not occur. Experiments conducted at higher flow rates (Reynolds number 
x. 1000) showed that flows whose large-scale structure is hydraulically controlled can 
give rise to unstable vertical velocity profiles with substantial turbulence and mixing in 
parts of the channel. In large-scale engineering and geophysical applications, we expect 
significant mixing in the supercritical regions of hydraulically controlled stratified 
flows. The hydraulic theory is useful in showing where this mixing is likely to occur. 

The agreement between experiment and theory was always globally excellent. The 
theory predicts well the observed self-similar velocity distributions and the large-scale 
displacements and patterns of the density surfaces. The effect of sidewall boundary 
layers, neglected in the theory, is equivalent to considering a channel with sidewalls 
slightly narrower at each location and with the narrowest section displaced slightly 
downstream, typically about 5 cm for our experiments. 

Our research is supported by the National Science Foundation. These experiments 
were begun by L.A. while on sabbatical at the Centre for Water Research, University 
of Western Australia, Perth, with support from the Australian Research Grants 
Scheme and a Gledden Visiting Senior Fellowship. Thanks to Professor J. Imberger 
and his colleagues in Perth for many thought-provoking discussions, as well as their 
hospitality. 

REFERENCES 

ARMI, L. 1986 The hydraulics of two flowing layers with different densities. J. Fluid Mech. 163, 

ARMI, L. & FARMER, D. M. 1986 Maximal two-layer exchange through a contraction with 
barotropic net flow. J. Fluid Mech. 164, 27-51. 

BAINES, P. G. & GUEST, F. 1988 The nature of upstream blocking in uniformly stratified flow over 
long obstacles. J. Fluid Mech. 188, 2345.  

BENJAMIN, T. B. 1981 Steady flows drawn from a stably stratified reservoir. J. Fluid Mech. 106, 
245-260. 

BERNSTEIN, A., HEISER, W. H. & HEVENOR, C. 1967 Compound-compressible nozzle flow. Trans. 
ASME E: J. Appl. Mech. 34, 548-554. 

LONG, R. R. 1953 Some aspects of the flow of stratified fluids. I. A theoretical investigation. Teflus 

LONG, R. R. 1953 Some aspects of the flow of stratified fluids. 111. Continuous density gradients. 

SMITH, R. B. 1985 On severe downslope winds. J.  Atmos. Sci. 42, 2597-2603. 
WILLIAMS, R. & ARM, L. 1991 Two-layer hydraulics with comparable internal wave speeds. J. Fluid 

WOOD, I. R. 1968 Selective withdrawal from a stably stratified fluid. J. Fluid Mech. 32, 209-223. 
YIH, C . 4 .  1969 A class of solutions for steady stratified flows. J. Fluid Mech. 36, 75-85. 

27-58. 

5, 42-58. 

Tellus I, 341-357. 

Mech. 230, 667-691. 


